
Writing MIPS Procedures

Why Write Procedures?
It never fails that there is some sequence of instructions that performs some useful job,

and you’ll need to use them over and over again. A procedure is a construct to reduce the
number of times you must repeat these same instructions in your code. Using procedures makes
your code more legible and smaller than if you used the cut and paste features of your text editor.
You can even make libraries of procedures so you can reuse them in different programs.

The Basic Features of Procedures
Procedures have general features that are shared between most languages. Understanding

these features will help us to understand how to represent procedures in MIPS. The main features
of procedures are arguments, return values, local data, body, and being. The arguments are
values passed into a procedure when it is called by some piece of code, which may or may not be
in another procedure. The return values are values returned from the callee procedure to the
caller in response to being called with particular arguments. Local data is data used with the
procedure that exists for only as long as a particular instance of a procedure call is still being
evaluated. The being of a procedure is the fact that it must exist somewhere in memory, so it
takes up space and has a position.

Giving a Procedure a Sense of Being
In C, when you define a procedure, it’s name represents a pointer to the beginning of the

procedure’s instructions (a procedure pointer). When programming in MIPS assembly language,
it’s exactly the same thing. The label that defines the beginning of the procedure’s instructions
represents the address of the first instruction.

procedure: # Address of first instruction of procedure.
jr $ra # Return from procedure.

This procedure is as simple as they come. It simply jumps back to the instruction after the
one that called it using the return address register, $ra. When the instruction jal (jump and link),
is evaluated, $ra is loaded with the address of the instruction after the jal instruction.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

int procedure(int x, int y)
 {
 int z;
 int data[20];
 for (z = 0; z < 20; z++) data[z] = x + z;
 return (x + y);
 }

Return Value

Being Arguments

Local Data

{ }

Body

PARTS OF A PROCEDURE

jal address # $ra = $pc + 4; goto address;
jr $address # goto $address;

The program counter register, $pc, contains the current loaded instruction’s location. Adding 4
to $pc gives following instruction.

Notice that jal takes a value representing the address. This numeric value is actually just a
pointer to the first instruction of the procedure, so the label placed at the beginning of the
procedure should be used there to tell the microprocessor where to jump.

Making a Procedure Do Something
In order for a procedure to be useful, it must contain instructions. There are some

conventions that these instructions must follow in order to coexist peacefully with other
procedures:

1) The static registers, $s0-$s7, must have the same value leaving a procedure as coming into
a procedure.

2) The address in $ra register must be available at the end of the procedure to continue proper
evaluation after the procedure has ended.

3) The addresses in $sp and $fp should be the same leaving as entering.
4) The registers, $t0-$t9, $a0-$a3, and $v0-v1 may be changed without restoring their

previous values at the end.

The easy part of a procedure is just the code of the body. What if we wanted to use the
static registers? We would have to store the value someplace in memory to restore the value later
on at the end of the procedure! This is where the stack pointer, $sp, comes in handy.

To make all code readable and easily understood there are a few conventions on the use of
the stack pointer. The stack pointer moves down in memory as the stack grows in size, always
points to the last word in the stack, and is only tampered with at the beginning and end of a
procedure. It’s tampered with at the beginning of a procedure to stretch the stack, and tampered
with at the end of a procedure to return it to it’s previous size.

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

SIMPLIFIED PICTURE
OF PROGRAM'S

MEMORY STRUCTURE

CODE

GLOBAL VARIABLES

HEAP

STACK
FFFFFFFC
FFFFFFF8
FFFFFFF4
FFFFFFF0

FFFFFDA4
FFFFFDA0
FFFFFD9C
FFFFFD98
FFFFFD94
FFFFFD90

...

$sp

Grows Down

$sp

$gp

$pc

Grows
Down

Let’s make an example of using the registers $ra, $s0, and $s1. Notice how first I allocate
the space for the registers on the stack, and then I store their values onto the stack. At the end of
the procedure, I restore their previous values from the stack, then deallocate the space on the
stack.

procedure:
addi $sp, $sp, -12 # $sp -= 3; /*allocate 3 words*/
sw $ra, 8($sp) # *($sp + 2) = $ra; /*save $ra*/
sw $s0, 4($sp) # *($sp + 1) = $s0; /*save $s0*/
sw $s1, 0($sp) # *($sp + 0) = $s1; /*save $s1*/
addi $s0, $zero, 50 # $s0 = 50;
addi $s0, $zero, -23 # $s1 = -23;
add $a0, $s0, $s1 # $a0 = $s0 + $s1;
jal procedure2 # procedure2($a0);
lw $s1, 0($sp) # $s1 = *($sp + 0); /*restore $s1*/
lw $s0, 4($sp) # $s0 = *($sp + 1); /*restore $s0*/
lw $ra, 8($sp) # $ra = *($sp + 2); /*restore $ra*/
addi $sp, $sp, 12 # $sp += 3; /*deallocate 3 words*/
jr $ra # return;

The region of the procedure where you allocate room on the stack and backup register
values is called the prologue. The region of the procedure where you restore register values and
deallocate room added to the stack is called the epilogue. The code between these to regions is
called the body.

Giving a Procedure Arguments
Many procedures need extra information from the calling procedure to perform a

particular job. This information is passed through the arguments. MIPS has four registers to use
as arguments (4 words worth of arguments), $a0 through $a3. If more arguments are needed,
then these are stored on the stack before the saved registers. They are found before the saved
registers because the caller is the one that allocates the memory on the stack and the one that
deallocates the memory after the procedure ends.

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

procedure:
 addi $sp, $sp, -12
 sw $ra, 8($sp)
 sw $s0, 4($sp)
 sw $s1, 0($sp)
 addi $s0, $zero, 50
 addi $s0, $zero, -23
 add $a0, $s0, $s1
 jal procedure2
 lw $s1, 0($sp)
 lw $s0, 4($sp)
 lw $ra, 8($sp)
 addi $sp, $sp, 12
 jr $ra

{

{
{

Prologue

Body

Epilogue

procedure:
addi $sp, $sp, -4 # $sp -= 1; /*allocate 1 word*/
sw $ra, 0($sp) # *($sp + 0) = $ra; /*save $ra*/
add $a0, $a0, $a1 # $a0 = $a0 + $a1;
lw $t0, 4($sp) # $t0 = *($sp + 1); /* Get arg on stack */
add $a0, $a0, $t0 # $a0 = $a0 + $t0;
jal procedure2 # procedure2($a0);
lw $ra, 0($sp) # $ra = *($sp + 0); /*restore $ra*/
addi $sp, $sp, 4 # $sp += 1; /*deallocate 1 word*/
jr $ra # return;

Notice how an argument is obtained from the stack by looking beyond the stack space
allocated in the prologue. Another way of organizing data in the stack is by using an additional
pointer called the frame pointer, $fp. The frame pointer points to the address where the stack
pointer pointed at the beginning of the procedure. Just in case the caller uses the frame pointer
too, it must be saved at the beginning of the procedure. Here’s an example of it’s use:

procedure:
addi $sp, $sp, -8 # $sp -= 2; /*allocate 1 word*/
sw $fp, 4($fp) # *($sp + 1) = $fp; /*save $fp*/
sw $ra, 0($sp) # *($sp + 0) = $ra; /*save $ra*/
addi $fp, $sp, 8 # $fp = $sp + 2; /* set frame pointer */
add $a0, $a0, $a1 # $a0 = $a0 + $a1;
lw $t0, 0($fp) # $t0 = *($fp + 0); /* Get arg on stack */
add $a0, $a0, $t0 # $a0 = $a0 + $t0;
jal procedure2 # procedure2($a0);
lw $ra, 0($sp) # $ra = *($sp + 0); /*restore $ra*/
lw $fp, 4($fp) # $fp = *($sp + 1); /*restore $fp*/
addi $sp, $sp, 8 # $sp += 2; /*deallocate 1 word*/
jr $ra # return;

In this case, we could get the argument from a fixed position based on the frame pointer
instead of adjusting the value to take into account the newly allocated stack space. The $fp can
also be used to access local data stored on the stack through the use of negative offsets.

Local and Global Variables
Looking at the diagram above, it can be seen that local variables come after the saved

registers. Local variables are primarily just for saving registers when you need to call a procedure
(for example saving all of the temporary registers whose values cannot be destroyed) or if you run

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

$sp

Grows Down

Local
Variables

Saved
Registers

Argument 5
Argument 6
Argument 7

...

$fp

out of registers for all of the necessary variables. Allocating space on the stack for local variables
is done in the prelude, but storing values in these variables can happen at any point in the
procedure.

Global variables are located in a place in memory pointed to by the global pointer, $gp.
All global variables are some offset from this global pointer. Variables stored in the heap are
similar to global variables in that they can last until the end of the program, except that they aren’t
accessed via the global pointer, and they are created in the middle of the program (not at the very
beginning) and can just as easily be destroyed in the middle of the program.

Arrays as Local Variables
Recall that when an array is declared in C, the variable is actually a pointer to the first

element of that array, not the array of elements. In MIPS assembly language it’s the same way.
When we define a local array in a procedure, the variable that allows us to use the array is just a
pointer to the very first element. For example:

procedure:
addi $sp, $sp, -88 # $sp -= 22; /* Allocate 22 words */
sw $ra, 84($sp) # *($sp + 21) = $ra; /*save $ra*/
sw $s0, 80($sp) # *($sp + 20) = $s0; /*save $s0*/
sw $s1, 76($sp) # *($sp + 19) = $s1; /*save $s1*/
addi $s0, $sp, 0 # $s0 = $sp + 0; /*int $s0[10];*/
addi $s1, $sp, 40 # $s0 = $sp + 10; /*int $s1[9];*/
add $a0, $zero, $s0 # $a0 = $s0;
add $a1, $zero, $s1 # $a1 = $s1;
jal arraywiz # arraywiz($a0, $a1);
lw $s1, 76($sp) # $s1 = *($sp + 19); /*restore $s1*/
lw $s0, 80($sp) # $s0 = *($sp + 20); /*restore $s0*/
lw $ra, 84($sp) # $ra = *($sp + 21); /*restore $ra*/
addi $sp, $sp, 88 # $sp += 22; /*deallocate 22 words*/

jr $ra

Notice that drawing a picture can help you avoid making errors when you write a
procedure that must use the stack. Also be aware that the only place that the stack pointer should
be decremented in is the prologue, and the only place the stack pointer should be incremented in is
the epilogue. Changing the stack pointer elsewhere opens you up to errors and leads to an
inefficient program.

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

$sp

Grows Down

Array of
10 words

Array of
9 words

Saved $s1
Saved $s0
Saved $ra

...

Offsets from $sp

0

40

76
80
84
88

A Procedure That Returns Something
Some procedures return values. MIPS reserves the $v0 and $v1 registers for these return

values. This way up to a 64 bit value can be returned by a procedure. In the case that more than
64 bits must be returned to the calling procedure, it can be left on the stack. This data must be
duplicated, saved, or used before another procedure is called, because that would cause the data
to be overwritten. (This is typically a bad idea since you can easily forget not to overwrite the
data, so I’m not going to show any examples.)

procedure:
addi $sp, $sp, -4 # $sp -= 1; /*allocate 1 word*/
sw $ra, 0($sp) # *($sp + 0) = $ra; /*save $ra*/
add $a0, $a0, $a1 # $a0 = $a0 + $a1;
lw $t0, 4($sp) # $t0 = *($sp + 1); /* Get arg on stack */
add $a0, $a0, $t0 # $a0 = $a0 + $t0;
jal procedure2 # $v0 = procedure2($a0);
addi $v0, $v0, 50 # $v0 = $v0 + 50;
lw $ra, 0($sp) # $ra = *($sp + 0); /*restore $ra*/
addi $sp, $sp, 4 # $sp += 1; /*deallocate 1 word*/
jr $ra # return $v0;

Page < 6 >
By Joshua Cantrell
jjc@cory.berkeley.edu

